Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
MUST Repository
  • Communities & Collections
  • All of MUST Repository
  1. MUST-IR Home
  2. Browse by Author

Browsing by Author "Goud, B. Shankar"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Scrutinization of Chemical Reactions, Permeability, and Magnetic Field of A Dissipative Flow Effects of Silver (Ag) Nanoparticles – Water Over A Moving Vertical Porous Medium.
    (ELSEVIER, 2025-01-03) Lutera, Joseph N.; Shekar, MN Raja; Goud, B. Shankar
    Incompressible nanofluid flow applications have recently drawn significant attention among scientists and engineers. The dimensionless leading comparisons of this study are analytically executed using the Laplace transformation technique and graphically analyzed through the MATLAB software tool. The silver nanoparticles water thermophysical properties framed this exploration setting. This study finds that magnetic activity slows down the speed of the nanofluid flow. The solutes are consumed during the chemical reaction process, declining the concentration of species. The augmentation in solid volume fraction sinks the velocity and upsurges the nanofluid’s flow temperature. The permeability and thermal radiation constraints enhance the skin friction coefficient. These results provide valuable insights into designing and controlling mass and heat transmission in nanofluid-based schemes, such as creating heat exchangers, cooling schemes, electrochemical systems, and filtration processes in industries. It is also applicable in the health sector, for instance, by using a magnetic field to control the targeted area for drug injection in the human body.

Copyright © 2025

    Mbeya University of Science and Technology