Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
MUST Repository
  • Communities & Collections
  • All of MUST Repository
  1. MUST-IR Home
  2. Browse by Author

Browsing by Author "Kalita,Hemanta"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Existence of Maximal and Minimal Solutions Initial Value Problem for The System of Fractal Differential Equations
    (Springer, 2025) Sajid,Mohammad; Kalita,Hemanta; Zengin, Gülizar Gülenay; Wangwe, Lucas
    Differential equation refers to an equation that includes a function and its derivatives. These equations serve to model real-world situations where rates of change are significant. They are classified as either ordinary differential equations (ODEs) or partial differential equations (PDEs), depending on whether the unknown function is dependent on one or several independent variables, respectively. This paper presents a thorough investigation into fractal differential inequalities linked with an initial value fractal differential equation. It establishes the existence of a solution to this equation and demonstrates the convergence of both minimal and maximal solutions. Additionally, the paper introduces a comparative principle for evaluating solutions to the initial value problem associated with the fractal differential equation, ensuring a detailed and rigorous analysis of this subject.

Copyright © 2025

    Mbeya University of Science and Technology