Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
MUST Repository
  • Communities & Collections
  • All of MUST Repository
  1. MUST-IR Home
  2. Browse by Author

Browsing by Author "Mzurikwao, Zacharia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Artificial Intelligence in determining optimal questions in assessing social socio-economic status of individuals for routine immunisation services in Tanzania
    (Tanzania Journal of Health Research, 2025-08-05) Mzurikwao, Deogratias; Edward, Mhamilawa Lwidiko; Simba, Daudi; Balandya, Belinda; Assenga , Evelyne; Okanda, Nyatega Evelyne; Zeramula, Jonathan; Wibonela, Seif; Mzurikwao, Zacharia; Sunguya, Bruno
    Accurate determination of socio-economic status (SES) is crucial for equitable access to immunization services. Existing SES assessment tools, like the DHS wealth index, are comprehensive but impractical for routine clinical settings due to their length. Objective: To identify the minimum number of questions that can validly determine SES using artificial intelligence (AI), and to assess their validity compared to the standard DHS wealth index. Methods: This study applied Principal Component Analysis (PCA), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN) using the DHS wealth index as the gold standard. Data were collected from routine RCH clinics in Tanzania. CNN was used to extract weights for each question, and ANN was trained to validate different subsets of questions.

Copyright © 2026

    Mbeya University of Science and Technology