Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
MUST Repository
  • Communities & Collections
  • All of MUST Repository
  1. MUST-IR Home
  2. Browse by Author

Browsing by Author "Inward, Rhys"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    GRAPEVNE - Graphical Analytical Pipeline Development Environment for Infectious Diseases
    (Wellcome Open Research, 2025-05-29) Brittain, John-Stuart; Inward, Rhys; Mwanyika, Gaspary; Tegally, Houriiyah; Githinji, George; Tsui , Joseph; Gutierrez, Bernardo; Huynh, Tuyen; Kifle Tessema, Sofonias; McCrone, John T.; Bhatt, Samir; Dasgupta, Abhishek; Ratcliffe, Stephen; Kraemer, Moritz U.G.
    The increase in volume and diversity of relevant data on infectious diseases and their drivers provides opportunities to generate new scientific insights that can support ‘real-time’ decision-making in public health across outbreak contexts and enhance pandemic preparedness. However, utilising the wide array of clinical, genomic, epidemiological, and spatial data collected globally is difficult due to differences in data preprocessing, data science capacity, and access to hardware and cloud resources. To facilitate large-scale and routine analyses of infectious disease data at the local level (i.e. without sharing data across borders), we developed GRAPEVNE (Graphical Analytical Pipeline Development Environment), a platform enabling the construction of modular pipelines designed for complex and repetitive data analysis workflows through an intuitive graphical interface

Copyright © 2025

    Mbeya University of Science and Technology